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Abstract

Density functional theory (DFT) calculations are carried out for polyvinyls repeating units at the B3LYP/6-31G(d) level, and the

calculated results of ET, Eint, Cv, S, Qii, m, a and qK are used to predict V (298 K), Ps, Fd, RLL, c, Hvsum, UR and UH. Multiple linear stepwise

regression analysis is used to generate eight more physically meaningful quantitative structure–property relationship (QSPR) models having

correlation coefficient R of 0.996 for V (298 K), 0.998 for Ps, 0.997 for Fd, 0.997 for RLL, 0.997 for c, 0.992 for Hvsum, 0.992 for UR and 0.991

for UH, and the conclusions are in consistence with theoretical analysis. Investigated results indicate QSPR models given here are easy to

apply and have good predictive capability.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Quantitative structure–property relationship (QSPR)

models of polymers are the theoretical basis for polymeric

molecular designs and material designs, and have the ability

to survey a list of possible candidates and exclude ones that

do not fall into the desired property range for the

application. In particular, no time is wasted on synthesis

and testing of new materials that are deemed inappropriate

by QSPR models. With recent progress in computational

hardware and the development of molecular quantum

mechanical calculations, the exponential growth in the

number of papers dealing with QSPR studies for polymers

clearly demonstrates the rapid progress in this area.

Hamerton et al. [1] have used molecular modeling and

molecular orbital to find molecular descriptors that could be

used to derive an empirical equation to describe the glass

transition temperature (Tg) of two related classes of

poly(arylene ether)s and succeeded in predicting the thermal

characteristics of another polymer of the same type using

the equation. Katritzky at el. [2] have developed a QSPR
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model having a coefficient of determination of 0.946 to

predict Tgs for a diverse set of 88 polymers with

comprehensive descriptor for structural and statistical

analysis (CODESSA) program. Cao and Lin [3] have tested

the same set of 88 polymers against a correlation involving

their own chosen descriptors in an attempt to derive a more

physically meaningful QSPR with a coefficient of determi-

nation of R2Z0.9056. Faulon et al. [4] have constructed

QSPRs, which could be used to efficiently predict transport

properties in amorphous polymeric material from molecular

dynamics simulation since only bulk modulus and/or

cohesive energy need to be determined from a simulation.

Kholodovych et al. [5] have presented a surrogate model for

the prediction of cellular response to the surface of

biodegradable polymers. The prediction of their model,

when tested against experimental results, has shown a high

degree of accuracy that was sufficient for rational design of

polymeric materials for biomedical applications. Therefore,

their models can provide direct guidance to the synthetic

chemist in biomaterial design. Zhang et al. [6] have built a

QSPR model, based on the structural analysis of polymers,

to predict the refractive index of linear polymers. It must be

noted that Morrill et al. [7] apply the AM1 method within

AMPAC and CODEESSA to calculate molecular properties

to derived descriptors, which have strongly predictive

nature and is a testimony to the role that semi empirical

methods play in studying such large molecular systems. In

addition, many authors have studied QSPRs for polymers
Polymer 46 (2005) 9443–9451
www.elsevier.com/locate/polymer

http://www.elsevier.com/locate/polymer


X. Yu et al. / Polymer 46 (2005) 9443–94519444
using artificial neural networks (ANNs) and obtained

valuable results [8–12]. The purpose of this article is to

study QSPRs for Polyvinyls using DFT B3LYP method. 8

QSPR models, based on quantum chemical descriptors, are

obtained to predict V (298 K), Ps, Fd, RLL, c, Hvsum, UR and

UH of polyvinyls. Comparison of our results with other

existing QSPR models was also carried out.
2. Data set

Table 1 shows the data set for 39 polymers with structure

–(C1H2–C2R3R4)–, which are taken from Ref. [13]. These

proprieties are the molar volume V (298 K), the

molar parachor Ps, the dispersion component Fd of

the molar attraction constant, the molar refraction RLL, the

molar diamagnetic susceptibility c, the molar viscosity–
Table 1

Experimental data of properties for polymers [13]

No. Polymers V (298 K) Ps Fd

1 Polyethylene 33.1 78.0 540

2 Poly(vinyl alcohol) 35.0 98.0 560

3 Poly(vinyl fluoride) – 86.6 570

4 Poly(vinyl chloride) 45.1 115.2 800

5 Poly(vinyl bromide) – 128.9 900

6 Poly(vinylidene fluoride) 40.0 95.2 640

7 Poly(vinylidene chloride) 58.4 152.4 1100

8 Poly(vinyl acetate) 72.4 182.0 1160

9 Poly(vinyl ethyl ether) 76.7 176.0 1140

10 Poly(N-vinyl pyrrolidone) 88.9 246.9 1660

11 Poly(vinyl propionate) 98.1 221.0 1430

12 Poly(vinyl n-butyl ether) 108.1 254.0 1680

13 Poly(vinyl sec-butyl ether) 108.9 254.0 1640

14 Poly(vinyl methyl ether) – 137.0 870

15 Poly(vinylide bromide) – 179.8 1300

16 Poly(vinyl methyl ketone) 62.6 – –

17 Poly(vinyl iso-butyl ether) 107.7 – –

18 Poly(vinyl n-pentyl ether) 124.4 – –

19 Poly(vinyl n-octyl ether) 171.0 – –

20 Poly(vinyl n-decyl ether) 208.7 – –

21 Poly(vinyl n-dodecyl ether) 238.1 – –

22 Poly(N-vinyl carbazole) 161.0 427.7 3196

23 Poly(vinyl isopropyl ether) 93.2 – –

24 Poly(o-vinyl pyridine) – – –

25 Poly(vinyl benzoate) – 315.9 2170

26 Poly(vinyl cyclohexane) 116.0 283.9 1970

27 Poly(b-vinyl naphthalene) 140.0 – –

28 Poly(a-vinyl naphthalene 137.7 360.0 2590

29 Poly(vinyl n-butyl sulfide) 118.6 – –

30 Poly(vinyl pivalate) – 298.8 1930

31 Poly(vinyl chloroacetate) 83.1 – –

32 Poly(vinyl cyclopentane) – – 1700

33 Poly(vinyl sulfuric acid) – – 1042

34 Poly(vinyl 2-ethylhexyl ether) 172.9 – –

35 Poly(5-vinyl 2-methyl-pyridine) – – –

36 Poly(p-vinyl pyridine) – 241.5 –

37 Poly(vinyl n-hexyl ether) 138.6 – –

38 Poly(vinyl trimethylsilane) – – 1624

39 Poly(vinyl methyl sulfide) – – –

The data units are cm3/mol for V, (cm3/mol) (10K5 N/cm)1/4 for Ps, J0.5 cm1.5/mol fo

(s1/3 mol) for UR and UH.
temperature function Hvsum, the molar Rao function UR and

the molar Hartmann function UH. The molar volume V

(298 K) is defined as the space occupied by one mole of

polymeric repeat units at the room temperature (TZ298 K).

The molar parachor Ps is used to calculate the surface

tension with the equation: gðTÞz Ps=VðTÞ
� �4

. The mole

attraction constant F is used to express the cohesive energy:

Ecoh zF2=Vð298 KÞ. The cohesive energy Ecoh can be

divided into the dispersion, polar and hydrogen bonding

components. Just like Ecoh itself, the mole attraction

constant F also has three components, relate to the

dispersion (Fd), polar (Fp) and hydrogen bonding (Fh).

The molar refraction RLL is used to estimate the refractive

index n with equation: nZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV C2RLLÞ=ðV KRLLÞ

p
. The

molar diamagnetic susceptibility c is used to calculate the

magnetic susceptibility. The molar viscosity–temperature

function Hvsum is useful in estimating the activation energy
RLL c Hvsum UR UH

9.298 22.70 840 1760 1350

10.723 27.85 2208 1930 1545

– 26.95 1542 1830 1445

14.288 38.85 2750 2480 2125

– 47.85 4969 2610 2125

9.025 31.55 2239 1930 1575

19.275 51.35 4580 3230 2710

– 48.85 2930 3980 3225

20.199 51.20 2380 4010 3300

– 67.74 3985 5272 4181

24.864 60.20 3350 4860 3900

29.497 73.90 3220 5770 4650

29.456 74.70 3440 5860 4800

15.496 39.85 1960 3130 2625

– 69.35 9112 3490 2710

18.696 – – 3630 2925

29.495 – – – –

34.146 – – – –

48.093 – – – –

57.391 – – – –

66.689 – – – –

– 126.30 8565 10261 8138

– – – – –

– – – 5655 4485

40.081 87.35 5470 7230 5745

34.951 85.85 2728 6380 5045

– – – – –

– 103.97 6452 8623 6839

– – – 5920 4790

– 84.85 4550 6830 5370

25.265 – – – –

– – – 5480 4346

– – 4396 3210 2670

48.055 – – – –

– – – 6584 5222

– 69.01 3985 5655 4485

38.795 – – – –

– – 5640 4515

– – – 3280 2765

r Fd, cm3/mol for RLL, 10K6 cm3/mol for c, g J1/3/molK4/3 for Hvsum, cm10/3/
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(EV(N)) for viscous flow at zero shear rate in the limit of

T/N.The molar Rao function UR is useful in predicting

the bulk modulus B and the thermal conductivity. The molar

Hartmann function UH can be used to estimate the shear

modulus G.
3. Quantum chemical descriptors

It is impossible to calculate descriptors directly for entire

molecule because all the polymers possess high molecular

weights, but molecular descriptors calculated directly from

polymeric repeating unit structure can be used on the study

of QSPRs for polymers (Fig. 1). Katritzky et al. [2,14] have

chosen models consisting of repeating units end-capped by

hydrogen, as small, yet representative structures, to

calculate the descriptors. Cao et al. [3] and Zhang et al.

[6] also have adopted this method to derive the descriptors

and succeeded in developing QSPRs for polymers. There-

fore, we focus on the following model to calculate

molecular quantum chemical descriptors.

Semi empirical quantum chemical methods (such as

AM1) include empirical parameters, which come from a

special system. Thus these methods is not universality for

others system. DFT method does not include any empirical

parameters and thus belongs to the family of ab initio

methods. In the DFT method, the exact exchange term used

in the Hartree–Fock method is replaced by a more general

expression: The exchange correlation functional. The

simplicity of the DFT stems from the fact that it uses a

functional of electron density to model exchange and

correlation. Further, DFT energy includes, besides the

exchange contributions, also some portion of the correlation

energy. In addition, DFT requires shorter computer times

when compared with conventional ab initio methods with

inclusion of electron correlation. Care should be taken,

however, when applying DFT to molecular clusters, where

the dominant part of the stabilization energy comes from the

dispersion energy [15]. The reason is that DFT method does

not include the dispersion energy. In this paper, the

calculated models are repeating units of polyvinyls. The

dispersion energy is very smaller than the total energy.

Therefore, we adopt DFT method to optimize and calculate

the models by the GAUSSIAN 03 program, at the B3LYP/6-

31G(d) level.

We calculate two types of quantum chemical descriptors.

One is thermodynamic parameters, such as the total energy

ET, the thermal energy Eint, the heat capacity at constant

volume Cv and the entropy S. ET is the contributions from
Fig. 1. The calculated models of polymers.
translational (Et), vibrational (Ev), rotational (Er), electronic

(Ee) movement, as well includes zero-point corrections. Eint,

Cv and S are values of a system at the condition TZ
298.150 K and PZ1.00000 atm, and all are the contri-

butions from translational, vibrational and rotational move-

ment of a molecular. The eight properties studied in this

paper are extensive properties. An extensive property

depends upon the size of the system. Therefore, we choose

extensive descriptors E, Eint, Cv and S, to correlate with

these extensive properties.

The other is electric parameters, including the quadru-

pole moment Qii, the dipole moment m, the average

polarizability of the molecule a and the net charge of

the most negative atom qK. According to Ref. [16],

the elements Qij of the quadrupole moment tensor are

defined as

Qij Z

ð
sðrÞrirjdr ði; j Z x; y; zÞ (1)

where s(r) is the charge density distribution and ri and rj are

the component of the distance vector (x, y, z) from the

molecular center. We define Qii with following equation

Qii Z
ðQxx CQyy CQzzÞ

3
(2)

Qii can reflect the degree of the asymmetry of charge

spherical distribution in the molecular. a is defined as

a Z
ðaxx Cayy CazzÞ

3
(3)

where axx, ayy and azz reflect electric perturbation in the x-,

y-, and z-coordinates. a increases with the size of the species

either as a result of an increase with the number of electrons

or by the expansion of the molecular radius. m is the total

dipole moment and a measure of the asymmetry in

molecular charge distribution. qK can reflect the force of

electrostatic interactions and also be used for the descriptor

of the molecular polarity. Since the intermolecular forces

energy are larger than the bond energy for a polymer, it is

very important to analyze the factors affecting the

intermolecular forces, which include van der Waals forces

(electrostatic force, induction force, dispersion force) and

hydrogen bond forces. The electrostatic force can be

expressed in m, Qii, etc. Both induction force and dispersion

force are depending on a [17]. qK can enhance inter-

molecular forces between the backbones of polymers as the

hydrogen bond can [3]. Therefore, we chose these four

electric parameters to develop QSPRs.
4. Results and discussion

By carrying out the correlation between these properties

(Table 1) and eight descriptors (Table 2) using stepwise

regression analysis, respectively, the regression analysis



Table 2

Quantum chemical descriptors for polymers

No. ET Eint Cv S Qii m a qK

1 K79.8304172 49.390 9.995 56.564 K14.8853 0.0000 22.922 K0.432886

2 K155.0338053 53.080 13.387 64.386 K18.9995 1.5623 26.394 K0.613228

3 K179.0564234 45.395 11.530 62.395 K18.7139 1.7179 23.250 K0.470982

4 K539.4262724 44.649 12.413 65.654 K26.1104 2.2701 31.436 K0.435643

5 K2650.9347582 44.301 12.881 68.484 K30.9478 2.1738 38.099 K0.438196

6 K278.1249231 34.767 13.240 66.386 K23.2619 2.1116 26.919 K0.528470

7 K999.0165315 39.347 15.804 72.511 K38.0945 2.2729 41.068 K0.430556

8 K307.5978522 79.081 24.409 84.235 K37.5420 4.9613 48.124 K0.491285

9 K233.6634595 90.549 22.643 79.629 K32.1344 1.0250 48.498 K0.467381

10 K365.2602387 110.814 29.644 89.172 K49.4005 3.7102 69.913 K0.444441

11 K347.0221322 98.073 29.068 92.262 K42.0187 1.8352 58.895 K0.464483

12 K312.2906337 128.148 32.324 95.229 K45.3354 1.0006 70.155 K0.475837

13 K312.2925054 127.823 33.116 94.639 K45.4648 1.0028 69.347 K0.487260

14 K194.3443061 71.814 17.736 71.990 K25.7032 1.1453 37.491 K0.490140

15 K5222.0343369 38.757 16.717 78.111 K48.5852 2.0005 54.688 K0.435758

16 K232.4663240 74.479 19.488 73.740 K32.4567 2.8307 43.917 K0.455009

17 K312.2915224 127.889 32.819 93.762 K45.2702 1.0042 69.204 K0.472939

18 K351.6044314 146.963 37.148 102.694 K52.0378 0.9452 81.126 K0.475982

19 K469.5455456 203.335 51.641 125.756 K72.0328 0.9939 114.308 K0.476197

20 K548.1729253 240.266 59.370 135.840 K85.4039 0.9905 136.564 K0.476155

21 K626.8004483 278.573 70.911 155.084 K98.8229 0.9924 158.866 K0.476204

22 K596.0986390 154.192 47.837 106.697 K83.3121 1.8874 152.602 K0.623371

23 K272.9065010 109.367 28.310 88.182 K39.0738 1.5392 57.830 K0.529383

24 K326.9115327 94.686 23.158 77.444 K46.2467 1.6980 73.626 K0.450420

25 K499.4475483 114.683 37.144 99.549 K60.2600 1.8148 96.369 K0.494372

26 K314.5043750 148.496 32.949 88.624 K53.2023 0.0172 81.756 K0.448398

27 K464.5217458 133.794 37.576 92.128 K67.5162 0.5642 124.825 K0.454383

28 K464.5209841 134.601 39.373 95.508 K67.7182 0.4207 122.212 K0.453627

29 K635.2700256 126.471 34.390 100.094 K52.7242 1.6846 83.539 K0.453634

30 K425.6491260 135.102 40.289 105.089 K55.4266 1.9133 79.454 K0.488248

31 K767.2938960 74.479 26.705 93.240 K47.9605 2.1090 57.057 K0.462173

32 K275.1854730 129.319 28.853 87.510 K46.4936 0.0417 71.594 K0.446000

33 K780.0062176 78.418 32.276 94.338 K48.9198 1.3325 59.617 K0.714710

34 K510.0618742 231.911 51.466 121.819 K79.5074 0.9794 125.333 K0.477772

35 K366.2375647 113.705 30.940 89.827 K53.2940 2.0405 87.026 K0.519765

36 K326.9179046 96.003 26.742 84.490 K48.26703 2.6659 73.633 K0.436578

37 K390.9181549 165.797 41.941 109.676 K58.6595 0.9952 92.153 K0.476187

38 K488.5008189 118.083 37.209 97.928 K48.2456 0.0607 74.036 K0.658183

39 K517.3282203 69.903 19.919 77.108 K33.1509 1.7129 49.294 K0.583014

The parameters units are a.u. for ET, a and qK; 4.19!103 J/mol for Eint; 4.19 J/(mol K) for Cv, and S; Debye Å for Qii; Debye for m.
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results (Tables 3 and 4) and plots of calculated values versus

experimental values (Fig. 2) have been obtained.

Qii is a negative value because Qxx, Qyy, and Qzz are

negative ones, which indicates the negative charge
Table 3

Results of stepwise regression analysis

Regression equation No.

V (298 K)Z2.129C3.407CvK2.668m 1

PsZK82.408C1.842aC1.905SC0.239Eint 2

FdZ310.858C19.193aC1168.492qKC5.978S 3

RLLZ0.469C0.412a 4

cZ1.627C0.061EintK1.418QiiK2.234m 5

HvsumZK1229.704K0.905ETK34.878EintC44.453SC63.585a 6

URZ1188.506C14.542EintC2608.088qKC55.610a 7

UHZ924.186C11.766EintC1858.584qKC43.136a 8

N is the number of sample; s is the standard error; RLOO is the correlation coefficie

out (LOO) method; ME is the average predicted error.
distribution is farther removed from the calculated model

center of the nuclear charges and the model is characterized

by the quadrupolarity {K C K} in all three independent

directions. The larger the descriptors Eint, Cv, S and a, and
Statistical analysis

N R s F ME (%) RLOO

26 0.996 4.8 1494 5.218 0.995

21 0.998 6.2 1621 2.189 0.996

23 0.997 59 973 8.224 0.992

21 0.997 1.306 2942 4.589 0.996

21 0.997 2.183 1013 3.692 0.996

22 0.992 292 264 9.426 0.987

29 0.992 289 492 6.377 0.988

29 0.991 239 443 6.960 0.986

nts between the experimental values and the predicted values by leave-one-



Table 4

The characteristics of parameters appearing in regression equations

No Descriptor Std. error t-test Sig. VIF

1 (Constant) 3.076 0.692 0.496 –

Cv 0.067 51.061 0.000 1.104

m 0.919 K2.904 0.008 1.104

2 (Constant) 13.111 K6.285 0.000 –

a 0.087 21.215 0.000 4.453

S 0.238 8.002 0.000 6.586

Eint 0.080 2.979 0.008 5.610

3 (Constant) 112.247 2.769 0.012 –

a 0.748 25.650 0.000 3.671

qK 169.073 6.911 0.000 1.129

S 1.672 3.576 0.002 3.899

4 (Constant) 0.610 0.769 0.451 –

a 0.008 54.239 0.000 1.000

5 (Constant) 1.549 1.050 0.308 –

Qii 0.049 K28.925 0.000 3.070

m 0.464 K4.816 0.000 1.165

Eint 0.021 2.850 0.011 3.216

6 (Constant) 562.818 K2.185 0.043 –

ET 0.071 K12.693 0.000 1.618

Eint 4.490 K7.767 0.000 7.890

a 4.317 14.727 0.000 4.915

S 10.396 4.276 0.001 5.790

7 (Constant) 384.549 3.091 0.005 –

a 3.471 16.022 0.000 3.537

Eint 2.746 5.296 0.000 3.474

qK 749.724 3.479 0.002 1.034

8 (Constant) 317.900 2.907 0.008 –

a 2.869 15.034 0.000 3.537

Eint 2.270 5.183 0.000 3.474

qK 619.783 2.999 0.006 1.034
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the more negative ET and Qii stand for a larger atomic

numbers in the calculated model.

These QSPR models show good correlations between

these properties and these descriptors, and all the correlation

coefficients R are above 0.990 (Table 3). According to the

statistical theory, if there is VIFjR10 in a model, the

descriptor j is strongly correlated with the others and it is not

significant to explain for that model, which is not reliable. In

this paper (Table 4), VIFj!10, therefore, these descriptors

are weakly correlated with each other and these QSPR

models can be regarded as the optimal regression equations.

According to the P-test (Table 4), all the descriptors

appearing in correlation equations were significant descrip-

tors. We predicted these properties with the leave-one-out

(LOO) method for the same experimental data set in Table 1

to test the reliability of these QSPR models. The plots of

predicted values versus experimental values are shown in
Table 5

The standard errors comparison of the present paper with previous work

Property V (298 K) Ps Fd RL

The present paper 4.8 6.2 59 1.3

Model 1A [18] 18.9 25 228 –

Model 2A [18] 40.5 37 235 –

Model 1F [19] 15.1 23 274 –

Model 2F [19] 58.4 66 491 –
Fig. 3. In fact Fig. 3 is very similar to Fig. 2, i.e. predicted

values are very close to calculated values. We can draw a

conclusion that these QSPR models are reliable. The

correlation coefficient RLOO (between the experimental

value and predicted value) and the average predicted error

ME are listed in Table 3.

In order to make a comparison between present wok and

previous work, Table 5 shows the standard errors obtained

from this paper and Sun et al.’s work [18,19]. Sun et al. [18]

obtained two kinds of calculated models (Models 1A and

2A) on these properties except the molar refraction RLL by

artificial neural works for linear chain polymers. After this

work, Sun et al. [19] further built two models (Models 1F

and 2F) on these properties for the same polymeric data set

by fuzzy set theory. The group average method is used to

calculate the descriptors for Models 1A and 1F, the

connectivity indexes method is used for Models 2A and 2F.

Regression Eq. (1) shows a good correlation between the

molar volume V (298 K) and the descriptors, Cv and m. The

former is the more significant descriptor according to the

t-test (Table 4) and increases V (298 K); While the

descriptor m deceases V (298 K). This phenomenon can be

explained by that the larger the descriptor Cv indicates a

larger substitute side (Fig. 1), thus increase V (298 K); In

addition, the presence of a large m could enhance

intermolecular force, make molecules closer to each other,

and decrease V (298 K). Therefore, V (298 K) is positive

correlation with Cv, but negative with m. Regression Eq. (1)

gives a correlation coefficient RLOO with 0.995. The average

predicted error ME is 5.218%, which reveals the quality of

regression Eq. (1) for prediction of V (298 K). Table 5

shows that the standard error (sZ4.8 cm3/mol) obtained

from regression Eq. (1) is smaller than that from previous

every models for V (298 K) [18,19]. The standard error

obtained from Model 1F is 15.1 cm3/mol, which is about

three times as larger as that obtained from regression Eq.

(1). While the s of Model 2F is 11 times larger than that of

ours.

Regression Eq. (2) is of good statistical quality with RZ
0.998. By the t-test the most significant descriptor appearing

in regression Eq. (2) is the descriptor a, and the second and

the last significant descriptor are S and Eint, respectively

(Table 4). The descriptors all are increase Ps. The reason is

that a larger a, stands for a larger atomic numbers in the

calculated model, makes an increase of V; A larger S or Eint

indicates a larger substitute side, causes an increase of V,

too. While Ps can be expressed in the term V with following
L c Hvsum UR UH

06 2.183 292 289 239

7.45 649 729 568

5.36 719 593 674

9 511 570 549

24 1729 1240 1428



Fig. 2. Plots of calculated values versus experimental values, (a): V (298 K); (b): Ps; (c): Fd; (d): RLL; (e): c; (f): Hvsum; (g): UR; (h): UH.
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equation

Ps Z Vg1=4 (4)

where g is the surface tension and g1/4 is almost a constant.

Therefore, Ps and V are consistent in variable trend, i.e. a

larger a, S or Eint also indicates a larger Ps. Thus Ps is

positive correlation with Eint, S and a. Seen from Table 3,

the correlation coefficient RLOO for the Ps is 0.996 and the

average predicted error is 2.189%. These confirm that the

predictive ability of regression Eq. (2) is excellent. The

standard error is 6.2 (cm3/mol) (10K5 N/cm)1/4, which is

about 10% of standard error value obtained from Model 2F,

and also very smaller than that obtained from the other

models (Table 5).

Regression Eq. (3) shows a high correlation coefficient

with R of 0.997. As seen in Table 4, the most important
descriptor used in regression Eq. (3) is a, the others

descriptors are qK and S. The polar component of

cohesive energy Ep is positive correlation with a. While

the molar attraction constant F is often expressed in

terms of the cohesive energy E and V at room

temperature.

F Z ðEVð298 KÞÞ1=2 (5)

Therefore, a larger a indicates a larger E, and results in a

larger Fd. On the other hand, a larger S expresses a larger

V (298 K), increase F and Fd according to Eq. (5). So Fd

is positive correlation with a and S. A more negative qK

denotes a larger intermolecular force, makes molecules

closer to each other, and causes a smaller V (298 K). But

a larger intermolecular force also indicts a larger E. In

the end, the former (the molar volume V (298 K)) may



Fig. 3. Plots of predicted values versus experimental values. (a): V (298 K); (b): Ps; (c): Fd; (d): RLL; (e): c; (f): Hvsum; (g): UR; (h): UH.
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dominate the variable trend of F in Eq. (5) and results in

a smaller F and Fd. This is the reason why qK increases

Fd. From Table 3, it is shown that regression Eq. (3)

possesses admissible predictive ability with MEZ
8.224%. The standard error is 59 J0.5 cm1.5/mol, which

is about 169 J0.5 cm1.5/mol smaller than the s of Model

1A [18] (Table 5). Model 1A possesses the smallest s of

228 cm1.5/mol for Fd among the models in Table 5.

According to regression Eq. (4), a increases RLL, which

can be understood from the Lorenz–Lorentz equation

RLL Z
NAa

330

(6)
where NA is a Avogadro constant, 30 is permittivity of the

free space. So a larger a denotes a larger RLL. Regression

Eq. (4) shows a fairly high correlation coefficient with RZ
0.997, in spit of a single descriptor as input. The standard

error is 1.306 cm3/mol. The average error (ME) of

prediction is 4.589%, which is satisfactory.

Any materials are characterized by diamagnetic suscep-

tibility. Polymers usually belong to the class of diamagnetic

materials, and the diamagnetic susceptibility c can be

expressed as

c ZK
m0ZNe2

6m
�r2M (7)
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where M is the molecule weight of the repeat unit, N is the

atomic number in per unit volume, Z is the electronic

number in per atom, m0 is the space permeability, m is the

electronic mass, �r2 indicates the charge distribution in a

atom and ‘-’ expresses the induced magnetization is

diamagnetic. Regression Eq. (5) shows a high correlation

coefficient with R of 0.997 between c and the descriptors,

Qii, m and Eint. The most significant descriptor is Qii,

according to the t-test (Table 4). This descriptor decreases c,

which can be understood as that a more negative Qii

suggests there are more atomics in substitute R (Fig. 1), and

results in a larger c according to Eq. (7). The second most

significant descriptor is m. The descriptor m decrease c,

since m affects the distance of atoms and the electric Larmor

precession. The last descriptor is Eint, which increases c.

This can be explained from Eq. (7). Regression Eq. (5) gives

a good enough prediction power with MEZ3.692%. The

standard error is 2.183!10K6 cm3/mol, which is quite satis-

factory in contrast to previous work [18,19] (Table 5). Model

2A has the smallest standard error (sZ5.36!10K6 cm3/mol),

which is still 3.177!10K6 cm3/mol larger than the value from

regression Eq. (5).

Regression Eq. (6) shows a good correlation between the

molar viscosity–temperature function Hvsum and the four

descriptors a, ET, Eint and S. The molar viscosity–

temperature function Hv can be expressed as a sum of two

terms

Hv Z Hvsum CHvstr (8)

Hvsum is a simple additive quantity estimated as a sum of the

group contributions made by the structural units in the

repeat unit. Hvstr is a structural term related to side chains,

which are a special type of side group. There is a equation

for Hv

Hv Z ME1=3
VðNÞ (9)

where EV(N) is the activation energy for viscous flow at zero

shear rate in the limit of T/N. For polymers a larger a, S

or a more negative ET would cause a stronger intermolecular

force, enhance stiffness of the polymeric chains, and result

in a larger EV(N). Thus there are a larger Hv and a larger

Hvsum by Eq. (9). In addition, a larger Eint denotes a smaller

EV(N), thus results in a smaller Hv and a smaller Hvsum,

according to Eq. (9). Table 4 shows the four descriptors all

are significant descriptors from the t-test. Seen in regression

Eq. (6), the average predicted error is 9.426%, which shows

the predictive ability of this model is generally acceptable.

The standard error is 292 g J1/3/molK4/3. Table 5 shows

Model 2F [19] and Model 1F [19] have the largest

and smallest standard error with sZ1729 g J1/3/molK4/3

and 511 g J1/3/molK4/3 for Hvsum, respectively, which are far

larger than the value in present paper.

Regression Eq. (7) displays a good correlation

coefficient with RZ0.992 between UR and the descriptors,

a, Eint and qK. These descriptors all are significant
descriptors by the t-test (Table 4). UR correlates with the

bulk modulus B

B

r
Z

UR

V

� �6

(10)

where r is the density of the polymer, V is the mole volume.

While there is Bz8.04 Esub1/V, Esub1 is the lattice energy of

molecular crystals. Eq. (10) can be expressed as

UR z1:4
E1=6

sub1V7=6

M1=6
(11)

For polyvinyls (Fig. 1) a larger a or Eint indicts a larger V7/6

and M1/6. But V7/6 increases faster than M1/6, which indicts

that UR will increase, too. So UR is positive correlation with

a and Eint. As stated above, a more negative qK denotes a

smaller V, and decreases UR. Regression Eq. (7) shows a

satisfactory average predicted error with ME of 6.377%. As

seen in Table 5, a very small standard error (sZ289 cm10/3/

(s1/3 mol)) is obtained from regression Eq. (7). While the

values obtain from Models 1A, 2A, 1F and 2F in literatures

[18,19] are 440, 304, 281 and 951 cm10/3/(s1/3 mol) larger

that the value obtained from in this paper, respectively,

(Table 5).

According to Table 3, regression Eq. (8) is similar to

regression Eq. (7), since UH can be expressed in the term UR

UH z0:8017UR (12)

but the predictive ability of regression Eq. (8) (MEZ
6.960%) is slightly lower than that of regression Eq. (7)

(MEZ6.377%). Regression Eq. (8) also shows a rather

small standard error (sZ239 cm10/3/(s1/3 mol)) in contrast

with standard errors in literatures [18,19] (Table 5).

It should be pointed out that the correlation coefficients

obtained from Bicerano’s models [13] are slightly high than

these reported in this work. But this is not surprising in view

of the fact that the numbers of descriptors involved in

Bicerano’s models are 2–7.5 times as large as in our

equations. For example, Bicerano’s model for V (298 K)

consisted of 15 topological and constitutional descriptors,

our model for V (298 K) is quite distinct as it comprises only

two descriptors. On the other hand, improvement of results

by increasing the number of descriptors in the correlation

equation should be considered with care, since over fitting

and chance correlations may in part be due to such an

approach [14].
5. Conclusion

Eight QSPR models are obtained using multiple linear

stepwise regression and eight descriptors, ET, Eint, Cv, S, Qii,

m, a and qK, to predict the properties V (298 K), Ps, Fd RLL,

c, Hvsum, UR and UH of polyvinyls. The produced QSPR

models are proved to be accurate and reliable. Since these

quantum chemical descriptors have clear physical
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meanings, express all of the electronic and geometric

properties of molecules and can be obtained quickly and

accurately by calculation, these QSPR models are valuable

for predicting the properties and providing theoretical

guidance for polymeric molecular designs and material

designs.
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